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SUMMARY

In the paper “The Mutual Interference of Boundary Layers,” the
authors investigated the problem of the interference of two planes
intersecting atright angles on the boundary layers formed by the motion
of fluid along the line of intersection of these planes.

In the present paper, the results of the preceding one me general-
ized to the case of planes intersecting at any angle. The motion of a
fluid in an angle less than 1800 is discussed and the enlargement of the
boundary layers near the line of intersection of the planes, the limits
of the interference effects of the boundary layers, and the corrections
on the drag are determined. All computations are conducted by the
K&m&n-Pohlhausen method for laminar and turbulent boundary layers. The
results sre reduced to tabulated form.

INTRODUCTION

The problem of the interaction of the boundary layers formed in the
dihedral angle between two thin plates p~allel to the intersection of
the plates wes apparently first proposed in reference 1 (for the case
of a,right angle). In the d.isc,ussionof reference 1, the need for a
generalization of results“obtainedf9r the case of the right angle to
the case of any angle less than two right angles (1800) was pointed out.
The present paper is concerned with this problem and its solution.
Although the limits of application for,the approximate method of the
finite-thickness layer previously used are retained, the problem of the
interaction of the boundary layers.near the intersection of a dihedral
angle of any magnitude from Oo to 180° is solved herein. For a laminar
layer, a first,and a second approx~ation we .given.aqd also, for a
check; a,sixth approximation (in the terminolo~ of Pohlhausen). It is

..’
/

*“O Dvizhenii Zhidkosti v Pogranichnom Sl&e Vblizi Linii Peresechenia
DvuldIPloskostei.” Rep. No. .279,CAHI, 1936, pp. 3-18.
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2 l?ACATM 1308

shown that the sixth approximation differs comparatively little from the
second. In conclusion, the case of a turbulent boundary layer is considered
with the assumption of the validity’ofthe ‘1/7’ power law for the velocity
profiles. As in reference 1, all computations can be carried through to
the end.,although the procedure is somewhat more cumbersome. The limits
of interference of the layers and the correction on the drag due to the
interference effect are determined.

1. DERIVATION OF FUNDAMENTAL 131TEGRALCONDITION

Consider the flow of a fluid, approaching from infinity with
velocity V, in the dihedral oblique angle f3 between two plates of the
same finite length x along the flow and infinite in the transverse
direction (fig. 1). The Y- and Z-axes me taken along the leading edges
of the plates and the X-axis along the flow parallel to the line of
intersection of the plates. In the oblique system of coordinates thus
obtained, the distribution of the velocities in the boundary layer may
be given in the same manner as for the case of the rectangular system
of coordinates for the flow in a right angle.

If’each plate worked independently of the other, there would be
formed on it a layer of thickness 5., which is a function only of x
and the profile of the longitudinal velocities

U. = U()(x,z,

or

U. = L@(x, y,

depending on whether the boundary layer
plane XOY or XOZ.

Because of the retarding effect of

sin 6)

sin e)

is considered to lie in the

one of the plates on the other
new the line of intersection, the layers must not be considered as in
the plane problem. The layers become three dimensional and the thick-
ness will now be a function of two variables:

b = b(x,y) on the plate containing the Y-axis

5 = b(x,z) on the plate containing the Z-exis

The component of velocity parallel to the X-axis, which will be denoted
by u without the subscript O, will be a function of the three
veriables; that is,

u = U(x,y,z)
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By the conditions of the problem, under the basic assumption of the
conc_eptof a finite region of influence of the viscosity, this function
must become zero on the surface “ofthe plates,:a constant at the outer
limit of the bound=y layer, and, particularly, at a finite distance from
the line of intersection of the plates, must become the velocity distri-
bution UO(X,Z, sin e) “or uo(x,y, sin @), which corresponds to the
isolated plate with boundary layer undisturbed by the siiJacentplate.
The boundery separating the region dlstw?bed by the adjacent plate from
the undisturbed”region, which corresponds to the isolated plate, shall,
for briefness, be denoted as the “interferenceboundary” of the layers.,
The equation of this boundary In the planes XOY end XOZ will be

ho = ho(x)

A section of the boundary layer cut by the plane x = ~ is Shown
in figure 2. Inasmuch as the coordinates of the system YOZ we
oblique, the equation of the boundary layer in this section for the
undisturbed region for Y2Y2(g), where

Y2(g) =ho(E) - zl(~) cos-e = ho(~) - 50(&) cot f3,will have the form

(1)

Equation (1) holds true both for e<; ad for 9>$ The non-

coincidence for 6 # ~ of the interference boundary hO(~) and the

coordinate YO(G) should be noted, from which starting point the
ordinate z of the outer limit of the boundary layer becomes and remains
constant, independent of y. All that has been stated about the YOX
planes also remains true, of course, for the 20X plane (because of
the symmetrY Yl(~) = ZI(g) ~d Y2(~) = z2(E)~ which should be remembered
in the following development).

For the present, the question as to the equation of the boundary
layer in the section x = ~. will be ignored. The fundamental integral
condition of the problem will now be set up. For this purpose, as in
the work previously cited, the momentum theorem is applied for a tube
of flow formed by the coordinate planes, by the surface of the lines of
flow passing through the edge of the bouuxiarylayer at section x = x,
and, finally, by the surf,acesof the lines of flow pass$ng throu@ the
perpenticulere to the plates located at the points y = ho(x) and

z = ho(x), where the part of the flow tube considered is between the

sections x = x and the section located upstream of the flow at a
sufficient distance from the section x = O, that is, from the entry of
the fluid on the plates. Then, as is known,
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u p(v-u) u du=. w (2)
<u)

where W is the drag of the plates applied to the segment of the flow
tube considered and u is the section of the boundary layer cut by a
plane perpendicular to the X-axis at distance x from the origin O.

The double integral on the left may be expressed in the following
manner (fig. 2):

u {f J’
Y~ Y2

(V-u) u du = sin f3 dy p(v-u) u dz +
(u) o 0

p(v-u) u dz -1-

,2[2+z,cosedyJy2+z::o: e-yp(vu,udz ~~~ ,3)

i.
where Z, the ordinate of the outer edge of the boundary layer, is, as
yet, an unknown function of y and x if the angle f3 is considered
as a parsmeter maintaining a constant value for the given problem. The
first two integrals have a very obvious origin; the presence of the last
integral is due to the obliqueness of the coordinates and the differences
in the direction between the ordinate Zl(x) and the thickness of the
layer 50(x), which makes it necessary to take the

two areas of the triangles shown hatched in figure

The drag W, as is easily seen from figure 3,
integral

integration over the

2.

is determined by the
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I
Y2(X)+Z1(X) Cos e

1

To dy de

Y2(E)+Z1(E) ~os e

where ‘C denotes the friction stress in the region

f“
Y2(E)+zl(&) Cos e

Tdy+
o

(4)

S distwbed by the
adjacent plate and %0 denotes the corresponding stress in the und~s-

turbed r“egion ‘o “ The boundary between the regions S and So is,
of course, the boundary of interference of the boundary layers.

Combining equations (3) and (4) yields, in general form, the
integral condition of the problem:

syz+z~ Cos e-y

1

yz+z~ Cos e
cos e

2 dy 1~(~-U) U dz

‘2
o

M
x Y&)+zJE) Cos e

J

Y2(X)+Z1(X) Cos @

= 2 ~dy+ 1Toay d~
o 0 YJ&)+zJ&) Cos @

(5)

Equation (5) is a generalization of the integral condition derived in
the previously cited paper for the case of a right-angled dihedral

~)”. The limits of integration are as yet unknown functions of the(e= !

arguments. In order to determine the form of these functions, it is
Lfirst ne essary that the shape of the boundary layer be given.

— —.
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2. SHAPE OF CROSS SECTION OF BOUNDARY LAYER; VELOCITY DIAGRAMS;

SOLUTION OF PROBLEM BY FIRST APPROXIMATION

The section of the boundsry layer on the plane x . ~ (fig. 2) is
considered and it is assumed that the equation of the curve defining the
edge of the boundary layer is

(6)

The form of the function f(y,z) cannot be determined unless the
additional assumption is made es to the similarity of the approximate
velocity diagrsms in the different planes X=g. The curve is sought
in the form

1- -1

where the function q(t) is subjected to the conditions

q)(o) = o

q)(l) = 1
}

(7)

(8)

and the function f(y,z) is subjected to the conditions

f(o,z) = f(y,o) = o (9)

Then the diagram of velocities of equation (7) will evidently satisfy
the end conditions of the problem at the walls and at the edge of the
boundary layer of equation (6). Setting

Y= 2(g,e) y’

z = 2(~,e) z’

where z(~,e) is a certain length characteristic for the section
~d y~ ad z!

x.~
are nondimensional magnitudes, yields equation (7) in

the form
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~om the condition of similarity of the velocity diagrams, the right side
of this equation must not contain ~, which can be the case if f(y,z)
is.a.homogeneousfunction of the nlh degree, so that

[ 1;=9 q$$)f(Y’,z’)
J

where

,,

fl~,e) . constant (lo)
a(~,e)

the constant depending, of course, on e. It is easy to see that the
degree of homogeneity should be equal to 2 (n = 2) and the function
f(y,z) must simply be equal to the product of the vsriables yz because
otherwise, with conditions (9) satisfied.,the derivatives of the velocity
with respect to the coordinates would become zero at the walls end would
not give any friction. lRromequation (6), the following equation of the
edge of the boundary layer at the section x.< is obtained:

yz = a(g,e) (11)

where, from equation (10), for example, choosing the coordinate
Y1(E) = z1(E) of the ~dist~bed layer for the ch~acterfstic len@h

2(&jf3) yields

(12)

where k(f3) is a certain nondimensional constant parametrically
dependent on the angle 6.

It is now easy to obtain the magnitudes Y2(g)j ho(&)} ~d the
function Z(y}g,e) for given angle f3. From equations (11) and (12),

where bo(~) ‘s a kno~ f~ction of
and determined by solving the problem
isolated plate.

~ independent of the angle 6’

of the boundary layer of the

(13)

. From the definition of the interference bofid=y ho(g) given in
equation (1),
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Finally, from equation (11), there directly follows that

a(~ e) = k(0) 502(E)
z(Y,E,e) = ;

sinz f3“ Y
(15)

It is easily verified that, for y = Y2(g)~ Z becomes zl(~). me
velocity diagram in the disturbed region of the boundary layer will
therefore be smoothly Joined with the velocity diagram in the undisturbed
region, that is, with the diagram of the isolated plate.

When the equation of the boundary layer is found, the required
velocity profile is obtained from equation (7):

u—= P
()

yz
v a(&,e)

(16)

or from equation (15):

u

()–’q*v (17)

If Y denotes the vaxiable ordinate of the edge of the boundary layer,
that is, the magnitude that, from equation (11), satisfies the equation

Y.z = a(g,e)

then

();,=Q.
* (17’)

It is important to
not only for those

note that equations (16), (17), and (17’) are true
values of y and z that satisfy inequalities (6):

Y1(W3=Y=Y2(’%0

Z1(W): Z5Z2(W3)

but in the entire range of interest:
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0s zs,z2(.E,e)

When the velocities of the points located in

are considered, the boundary layer for these

9

the rhomb

points is as though infinite,
but the velocities are dete&ined from computation on the hyperbolic edge”
of the boundsry layer.

The velocity profile has thus been determined and the edge of the
boundary layer is known. Substituting the values of u and Z in the
integrai co~ition (5) yields an
unknown a(~,e) inasmuch as all
friction at the wall

T.=i’J’”

‘o=~”

—
oniinsry differential equation with one
the magnitudes

1 ()auaz Z=om“—

1 t)Uo— —
sin f3bz Z=o

involved; including the

are expressed in terms of this function.

As is easily seen, however, the differential equation reduces to
a simple equation in finite form for determining the coefficient k(e)
appearing in equation (12). In order to obtain this single unknown
coefficient, certain boundary conditions are assigned for the function
Q(t) and its derivatives, as in the classical K&&n-Pohlhausen method.

A consideration of the first approximation is the first step. The
function p(t) is subjected only t~-the

Q(o) = o

Q(l)=l
,,

that isj the velocity u(x,y,z) becomes
outer limit of the boundary layer, which

conditions

,’,
zero”at the walls and 1 at the
leads to the profile

,, ,,,..,, , , .-
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+= *

For substitution in the integral condition,
this condition are first computed:

Yl

H
Z2 Y~

H

Z2

dy v
y dy z

o 0
u dz = a(x,e) o

0

(19)

the integrals that enter

y12z22

‘Z=* 4 =
* a(x,e) V

ho(x)-y
ho(x)

H

Cos e

“%%Y2 y dy z d.z
o

ho(x)

v

1[ 1
ho2(x)-2ho(x) y + y2 y dy

= a(x16) cos2 O Y2

[
= **a(x’e) ’12Cose+ 2

& Yl c0s 12e

— ——. . ,...- ,.-,,. ,.,-,, ,, ,. , , ,. ,,, ,,, I
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In a similar manner, the integrals of the square of the ve10City are
computed. The development will be limited to computing the integrals
just-given and the remaining ones arewritten out in ready form:

[[

Yl z’,

dy u’ dz = ~V2 a(x,8)
o 0

I
a(xl)EJ

bY’ Y

dy u’ dz= iv’ a(x,e) loge a(x~e)
Y~ o

‘1

ho(x)-y
ho(x)

r!

Cos e

[

Cos’ a
2 dy u’ dz

1 Y~~
.V’; yl2 cose+~

o a(x,e) +
‘2

1 Yp COS3 e

m az(x, e) 1
Thus, the left side of the integral condition reduces to the

JJ [
(.)P(V-U) u da = p~ sin e & a(x,e) + + a(x,e) loge

fOrm

a(x,e) +

Y1’

Cos’ e
1 1 Yf ~ Yf

1

COS3 e
~ Y1’ cos e + —

60 a(x,e) -B a2(x,f3)

The computation of the right side of integral condition (5) reduces to

,,, ,,.—
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According to the first approximation for the isolated plate (according
to Pohlhausen),

~o(z) 1 r12V.5
Y1(E)=—=— —sin .9 sin e v

p’ p’

Jo *= SineGJv12v o ,fi= +$ ~o(x) .in ,g

so that

1 a(x,e) v
Tv V sin2 E3+ ~ ?5.2(’)–

1

Cos e
v
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..>

All theee expressions
is considered; then

me immediately shnplified as soon as equation (12)

After all the simplifications are
determining k(e) is obtained:

k(e)

sin2 (3
502(E)

loge k(e) = :+ ~

It is reedily seen that, for 9 . ~,

made, the folluwing equation for

2 COS2 e 1 COS3 e

+ =kz(e) + = @(e)

equation (20) becomes

loge k = $

(20)

as given in the previously cited
layers on mutually perpendicular

The explicit dependence of
This relation may be obtained by

k= 1.95

work on the interference of the boundary
plates.

k on e is not given in equation (20).
the following stiple device: When

(21)

equation (20) becomes

2
%’

Cos e . ~e~
+E+;z2+~

(22)

When the values of g we given in the interval where the absolute value
of the right side of equation (22) will not exceed 1, the corresponding
value of 19 is obtained,K is determined, and then k(e) is found
from equation (21). It would also be possible, of course, to proceed in
another manner: Equation (22) may be rewritten

2p+&K3 ,:+E+E
k(~) = e (22’)

I!roma given value of ~, k(~) is obtained and then cos e, and so forth.
The simnlest method is to draw the function
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and obtain its intersection with straight lines parallel to the

~=cOse

and then to obtain “k from z.

The values of 6°, k(e), and z(e) are tabulated in table

The dimensions of the region of interference of the layers
determined. According to equation (14),

hO(x,@ = m(e) bO(X)

where

k+cose 1-1-Em=
sin 0 = — cot e

<

The values of m for different e can be determined from
The value O . 180° is somewhat isolated; for this value of 6

(23)

E-exis

1.

are first

(14’)

(24)

table 1
the

value of m becomes indetemninate. The value of m can easily be
obtained, however, by the usual device of analysis:

!9=1

so that, for 6 = 180°, ~ = - 1 and m= O. The values of m(e) are
given in the last column of table 1.

The correction in the drag of one side of the plate due to inter-
ference of the layers may be computed by the equation

2

J[!ho(E)

AW =
1

(TO-) dy d~
o 0

(25)

inasmuch as the difference in the drag may show up only in the region S
(fig. 3). The quantity 2 is the length of the plate in the direction
of the flow.
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L. .—
The integral equation (25) is readily computed and yields

1“m.2(&)+Z1(E) cos e -

AW = 1(TO-T)QWo 0

15

)’
2

J{ry2(E)+zl(E) cos e

pv
= sin e o 0 [ 1}&-m%ay ‘g

[
= & ‘(e) -

Finally,

Aw .

p(e) =

1

~oa2 ,g

-Z

p(e) u V2

‘Z(e) - Cos2e
2k(e) sin e 1 (26)

If L denotes the width of the plate in the direction transverse
to the flow and the effect of its free end is not considered, the
relative correction due to the interference of the boundary layers may
be computed:

AW p(e) P V2—=
r

p(e) 2 v
w

r
0.578L IJPV3 2

“mzE

or, when the Reynolds number R2 of the plate, which is
is introduced,

where q(e) denotes the relation

p(e)
q(e)”= 0.578

equal to V2/v,

(27)

Generally, the correction obtained is extremely insignificant for plates
that are long in the transverse direction. If, however, the transverse
length L is comparable with the width of the region of the disturbed
layer at the end of the plate x = ,2, the correction is not insignificant.
Thus, if
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r 12V2L = n-ho(l) = n~m(e) 5.(2) = n“m(@) ~
.

the relative correction will now he equal to

AW—= q(e) 1

w tim(e)”~

or

AW
II

~(e) percent

Y’=Y

where

All the magnitudes introduced in
in terms of the previously given

P(K) =

S(YJ =

100 q(e)

6 m((3)

(28)

(29)

the preceding equations may be expressed
parameter ~:

1-?$— cot e2X

1-$
1.156 <cot e

l-~
100

1.1566 1

(30)

In table 1, it is possible to find the values of these magnitudes for
different angles e or the corresponding values of the parameter U.
The magnitude s(9) increases with an increase of the angle 6. Some-
what paradoxical is the value of 50 percent for s(@) at @o = 180
and m.O. It is found that the region of interference is equal to
zero, and that a relative effect occurs on the drag, which is due to the
fact that the width of the region and the absolute correction on the
drag simultaneously approach zero. On the other hand, when O decreases
to O and m+=, s decreases to 16 percent. Both these cases are
limiting cases.

In figure 4, the curves of the relation between ~ and 9 are
drawn for the first and other approximations and also for the case of
turbulent layers.

— .—.—— -.—, ,,...!! . ..-.!! ..-.. !! ,., , .,, , , , , ,, , ,,,, , , ,
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3. SECOND AND SIXTH APPROXIMATIONS

m..
The folltii~ approximations differ from the fi~t only

boundary conditio~ that are imposed on the function ?(t).

The velocity profile for

corresponds to the assumptions

?(0) = o

$(1) =“1

q’(l) = o

these conditions will have the

No new difficulties in principle, aa
are obtained. Inasmuch es the basic
the first approximateion, the results
notations.

The magnitudes are all given in

-2

compared with the first

17

in the

fOrm

approximation,
computations have been explained in “
are presented with the same

table 2.

The final form of the equation for the

.-—=. - +
–“ —, /

e 120 4k(6) 28 #(e)

1 COS5 e
Zi3”~4(e)

The solution is effected by the sane device
approximation.

All computations
by which is meant the
boundary conditions:

.>

were also c=ied out

determination of k(8)

2_cos3 e 5 ,c0S4e

21 k3(9) 168 k4(e)

is

+

(31)

as in the case of the first

for
results of the assumption

the sixth approximation,
of the following
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This approximateion
profile

‘o

f?(o) = ‘o “ ~ (.1”)= 1

#’(o) = o q’(l) - 0

q“’(o) -0 Q“(l) = O

q“’(l) = o

gives, for the undisturbed layer, the velocity

‘“b)-5(H”‘($r-‘(a’]

and the following values of the frictional force and layer thickness,
which are extremely close to the accurate solution of Blasius:

It is therefore reasonable
lem of the interference of

to suppose that, for investigating the prob-
the layers, the sixth approximation is

considerably more satisfactory than the second.

The results are again collected in table 3.

In figure 4, the curve of & against 6 is given for the second
and sixth approximations.

As before, the equation for the detemmhuation of k(e) is also
given

kl& k = 0.1857 + 0.6370 ~
‘e COS3 e

+ O.61O7 Cos + 0.1043k’ k3-

cos4 e COS5 e Cos’ e COS7 e
0.0524 + 0.0053

k’ k5
+ 0.0025

k’
- 0.0001 —

k7

(32)
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4. ~CE OF ‘l?UK8UIENTBOUNDARY LA=.

For the solut:on of,this concludi~, part
known ‘1/7’“pow”erlaw’is applied, which, when
not two dimensional, imsume,sthe form

,[.1

1/7
.U= ~,Yz

.m

of the problem, the well-
the boundary layer is

(33)

As is known, for an infinite plate without interference of the
layer~, this law.gives excellent agreement with experiment; it may be-
expected that the application of the ‘1/7’ puwer law to this case will
be justified by experiment.

The generalized integral condition (5) is substituted in the
velocity-profileequation (33). Unfortunately, the integrals will now
not be so easily evaluated because the presence of fractional exponents,
particularly in the integrals taken over the hatched.areas of the
triangles shown in figure 2, strongly complicates the computations and
leads to the necessity of taking integrals of binomial differentials.
All the computation can be made with a sufficient degree of accuracy,
however, by using converging series and integrating them. The left
side of the integral condition reduces to the following expression:

J~ p(V-u) u da= PV2 a(x,e) sin 19

{

0.1607 + 0.0972 loge m+

Y12(X)

Y12 Cos e

[1
Y12 cos e

2

0.1360 ~ - ‘“0231 a(x,e) +

In computing the right side of the inte~al condition, the
K&&n formula is used for the expression of the friction at the wall
in the undisturbed region of the layer:

() 1/4
‘r0’= 0.0225 @2 ~ = 0.0225 PV2

o (il&J”4 ~ “5)

,. .s., !
.. ... . .

,.
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In the disturbed pti of the layer, the analogous formula

( )1/4= 0.0225 p~ “y
V a(x~e) sin 19

(36)

is assumed. These values -e substituted, aa in the previous sections,
in the fomnula for the resistance of the walls forming part of the
boundrxqyof a tube of flow. Then,

W=2
\

x

111{1Zrz
yl(x) Cos e + p v v - 0.0090 a(E,@) W +

1 5
F z

sin e
‘1

rx 11
-iyl (g) COS2 e

0.0056
a(~,e)

o

r x
27—

Jyl 4(g)COS4 e
0.0006

a3(J5,e)
o

0.0002

.[ o

Jyl 4(E)COS3 e
d~ - 0.0014

a2(G)e)
o

[

x
35
T
yl (g) COS5 e

d~ - 0.0003
a4(E,6)

o

x
43—

. .

d< +

d.z+

(37)

‘
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The K&n& formula was then used:

-. 1/5

()
50(X) = 0.370 ~ x

Vx

When it Is known (see equation (12)) in advance that the solution of the
problem will have the form

502(X)
a(X,6) = k(e) Y12(X) = k(e) —

sin2 6

this value is substituted in equations (34) and (37);
simplifications,the following solution is obtained:

(38)

then, after some

2(3’ COS3 e COS4 e
0.0230 ~ + 0.0023 — - 0.0004

k2
—+ 0.0001k3

COS5 e“

k’
+...

)

?E 2(X)
W=p Si:e

{

COS2 e
0.1949 k + ().1949COS 6 - ().0195k+ 0.0122 — -

k

COS4 e COS5 e
+ 0.00133 . + 0.00073

}

+...
#

COS3 e0.00305
k2

u V%02(X)
P(~-U) U da = p

(

I

0.1607 k+O.0972 k loge k+O.1360 cos 6 -
u sin e

Equating these
determining k(f3):

k=’

two expressions yields

10ge k = 0.1518 + 0.6056 ~ + 0.3632

the following equation for

COS2 e 36

k2
- 0.0556 ~+

F

COS4 e co~5 e COS6 e
0.0175 — -

k4
0.0082 — + 0.0051 —+...k5 k6

As in the preceding sections, the change of variables is made:

(39)
—\-,
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The transcendental equation

cos 6’= C exp (0.1518

NACA TM 1308

then becomes

+ 0.6056 K+ 0.3632 Z2 - 0.0556 &3 +

0.0175 & - 0.oo82 K5 + . . .) (40)

This equation is easily solved by the tabular method, where

Oo<o<1800 0.5540 >Z>- 1.0000

The corresponding values of 6, k(e), and ~(e)’ are given in table 4.
The further investigation in no way differs from that for laminar layers.
The values of the coefficients characterizing the boundary of the region
of interference and the corrections on the drag are given in table 4
for various values of 6, with all the computations ommitted, in the
notation previously used.

In connection with the formulas of turbulent friction, the
coefficients q and p are determined by the formulas:

and

AW

()

z v 1/5—=g.zE
w

(41)

(41’)

The dependence of p on ~ is determind,by the following series:

1
P =-

E
cot e (0.00133 - 0.00083 Z2 -t0.00021~3 - 0.00009 K4 -t

0.00005Z5 - 0.00003Z6 + . . .) (42)

!l=& (43)

The dependence of K on e is given for the case of turbulent layers
in figure 4. The boundery of the region of interference (the
coefficient m(e)) in the cese of the turbulent layers differs little
from the corresponding boutiary of the ltina layers, according to
the sixth approximation; whereas the relative correction on the drag s
in percent is several times less in the turbulent case.
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CONCLUSION

k> -

The result8 obtained have a readily “understandableform. In general,
., the effect of the interference of the layerd on the drag of the plates

is insignificant. The effect assumes an appreciable value only in the
case where the plates in the dimensions transverse to the flow become
comparable with the width of the region of disturbed boundary layer.
Moreover, interference plays a large part in the motion of fluids through
small dihedral ar@es. Thus, for example, in the motion near the inter-
section of a dihedral angle of about .1OO,the region of interference
exceeds by 16 times the thickness of the layer at the given section.
At smaller angles, the phenomenon is still more marked.

All the conclusions of the present and preceding papers require
experimental check.

By agreement with the Central Aero-Hydrodynamical Institute, the
aerodynamic laboratory of the Leningrad “IndustrialInstitute is under-
taking an experimental investigation of the”phenomenon of the inter-
ference of boundary layers. It is proposed, through use of the method
of microtunnels, to observe directly the distortion in the velocity
,profiles,and so forth, of the phenomenon.

The present work was carried out at the Aerodynamic Laboratory of
the Leningrad Industrial Institute.

.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics
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(d~g)

o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

,

e
deg)

o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

k(9)

2.894
2.880
2.840
2.773
2.682
2.567
2.434
2.283
2.120
1.948
1.773
1.601
1.442
1.300
1.185
1.099
1.042
1.010
1.000

g(e)

0.3455
.3419
.3309
.3123
.2856
.2504
.2054
.1498
.0819

0
-.0980
-.2136
-.3467
-.4945
-.6464
-.7880
-.9018
-.9750
-1.0000

— —

k(8)

2.217
2.205
2.168
2.108
2.026
1.925
1.808
1.678
1.542
1.407
1.284
1.182
1.108
1.060
1.032
1.016
1.007
1.002
1.000

g(e)

0.4511
.4466
.4334
.4108
.3781
.3339
.2765
.2038
.1126

0
-0.1353
-0.2893
-0.4513
-0.6064
-0.7422
-0.8524
-0.9332
-0.9832
-1.0000

TABLE 1

m((3)

0

?2.257
L1.315
7.278
5.364
4.190
3.388
2.793
2.329
1.948
1.624
1.340
1.088
.858
.6 2
.466
.301
.144

0

TABLE 2

p(e)

m
7.324
3.697
2.503
1.916
1.570
1.346
1.187
1.069
.974
.892
.813
.732
.641
.536
.417
.285
.142
3

m(e)

-
.8.360
9.090
5.948
4.343
3.352
2.665
2.150
1.742
1.407
1.127
.894
.702
.544
.414
.300
.196
.097

0

p(e)

.0.762
5.148
3.584
2.702
2.233
1.928
1.712
1.546
1.407
1.279
1.153
1.018
.875
.721
.556
.379
.192

0

q(e)

w

L2.671
6.396
4.330
3.315
2.716
2.329
2.054
1.849
1.685
1.543
1.407
1.266
1.109
.927
.721
.493
.246

0

q(e)

.3.:21
7.052
4.910
3.701
3.059
2.641
2.345
2.118
1.927
1.752
1.579
1.395
1.199
.988
.762
.519
.263

0

NACA TM 1308

s(e)
~percent)

16.3
16.4
16.7
17.2
17.8
18.7
19.8
21.2
22.9
25.0
27.4
30.3
33.6
37.3
41.0
44.7
47.3
49.3
50.0

s(e)

percent)

13.7
13.8
14.2
14.7
15.6
16.7
18.1
19.9
22.2
25.0
28.4
32.2
36.3
40.2
43.6
46.3
48.3
49.6
50.0
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TABLE 3

e
:deg)

o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

e
:deg)

o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

k(e)
.4

1.969
1.957
1.921
1.863
1.783
1.685
1.572
‘1.450
1.327
1.204
1.106
1.038
1.004
1.000
1.000
1.000
1.000
1.000
1.000

k(e)

1.805
1.796
1.767
1.720
1.654
1.577
1.485
1.382
1.273
1.164
1.065
1.000
1.000
1.000
1.000
1..000
1.000
1.000
1.000

E(e)

0.5079
.5032
.4892
.4648
.4296
.3815
.3181
.2359
.1309

0,
-0.1571
-0.3295
-0.4982
-0.6428
-0.7660
-0.8660
-0.9397
-0.9848
-1.0000

g(e)

0.5540
.5483
.5318
.5035
.4631
.4076
.3367
.2475
.1364

0
-0.1631
-0.3420
-0.5000
-0.6428
-0.7660:
-0.8660
-0.9397.
-0.9848
-1.000

m(e)

a

L6.940
8.365
5.458
3.965
3.039
2.393
1.907
1.524
1<204
.9’46
.741
.582
.466
.364
.268
.176
.088

0

p(e)

8“.116
4.272
2.921
2.262
1.879
1.631
1.457
1.324
1.204
1.094
.985
.887
.766
.643
.500
.342
.174

3

TABLE 4

m(e)

0

L6.O1O
7.915
5.172
3.765
2.898
2.292
1.835
1.469
1.164
.905
.700
.577
.466

. .364
..268
.176
.088.

0

p(e)

0

).0115
.0058
.0039
.0030
.0025
.0021
.0019
.0017
.0015
.0014
,.0013
.0012
,0010
.0008
.0006
.0004
..0002
)’

~(e)

a

L2.713
6.453
4.412
3.417
2.838
2.464
2.201
2.000
1.819
1.653
1.480
i.340
1.157
.971
.755
.517
.263

0

q(e)

0

0.3189
.1614
.1094
.0839
.0689
.0594
.0525
.0472
.0431
.0394
.0364
.0325
.0280
.0230,
.0178
.0122’
.0064
3“

s(e)
:percent)

12.3
12.4
12.8
13.4
14.3
15.5
17.0
19.1
21.7
25.“0
28.9
33..2
37.5
41.1
44.2
46.7
48.5
49.6
50.0

s(e)
cpercent

5.35
5.38
5.51
5.73
6.03
6.43
7.00
7.73
8.68
10.00
11.76
14.05
15.22
16.24
.17.08
17.95
“,18.73
.19.65
19.97
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x

Figure 1.

z

1(g) J.
ho(t)

—,—.

Figure 2.
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o \—

s.
“)

Figure 3.

1 First approximation
2 Second approximation
6 Sifih approximation

.1 T Turlulent layer

o

-0.5

-1.0
30 60 90 120 150

Figure 4.

NACA-Langley -11-6-51 - 1000
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